Epigenetic reprogramming of OCT4 and NANOG regulatory regions by embryonal carcinoma cell extract.

نویسندگان

  • Christel T Freberg
  • John Arne Dahl
  • Sanna Timoskainen
  • Philippe Collas
چکیده

Analyses of molecular events associated with reprogramming somatic nuclei to pluripotency are scarce. We previously reported the reprogramming of epithelial cells by extract of undifferentiated embryonal carcinoma (EC) cells. We now demonstrate reprogramming of DNA methylation and histone modifications on regulatory regions of the developmentally regulated OCT4 and NANOG genes by exposure of 293T cells to EC cell extract. OCT4 and NANOG are transcriptionally up-regulated and undergo mosaic cytosine-phosphate-guanosine demethylation. OCT4 demethylation occurs as early as week 1, is enhanced by week 2, and is most prominent in the proximal promoter and distal enhancer. Targeted OCT4 and NANOG demethylation does not occur in 293T extract-treated cells. Retinoic acid-mediated differentiation of reprogrammed cells elicits OCT4 promoter remethylation and transcriptional repression. Chromatin immunoprecipitation analyses of lysines K4, K9, and K27 of histone H3 on OCT4 and NANOG indicate that primary chromatin remodeling determinants are acetylation of H3K9 and demethylation of dimethylated H3K9. H3K4 remains di- and trimethylated. Demethylation of trimethylated H3K9 and H3K27 also occurs; however, trimethylation seems more stable than dimethylation. We conclude that a central epigenetic reprogramming event is relaxation of chromatin at loci associated with pluripotency to create a conformation compatible with transcriptional activation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Epigenetic Reprogramming of OCT4 and NANOG Regulatory Regions by Embryonal Carcinoma Cell Extract□D

Analyses of molecular events associated with reprogramming somatic nuclei to pluripotency are scarce. We previously reported the reprogramming of epithelial cells by extract of undifferentiated embryonal carcinoma (EC) cells. We now demonstrate reprogramming of DNA methylation and histone modifications on regulatory regions of the developmentally regulated OCT4 and NANOG genes by exposure of 29...

متن کامل

P-88: Comparing Epigenetic Profile of Oct4 Regulatory Region in Embryonal Carcinoma Cells under Retinoic Acid Induction

Background: Embryonal carcinoma (EC) cells derived from germ cell tumors are valuable tools for investigating differentiation and developmental biology processes in vitro. The advantage of the reproducible and rapid expansion of these cell lines provides a useful alternative to embryos for the study of mammalian cell differentiation. During early stages of cell differentiation, the rate of tran...

متن کامل

Differential Incorporation of β-actin as A Component of RNA Polymerase II into Regulatory Regions of Stemness/Differentiation Genes in Retinoic Acid-Induced Differentiated Human Embryonic Carcinoma Cells

OBJECTIVE Nuclear actin is involved in transcription regulation by recruitment of histone modifiers and chromatin remodelers to the regulatory regions of active genes. In recent years, further attention has been focused on the role of actin as a nuclear protein in transcriptional processes. In the current study, the epigenetic role of nuclear actin on transcription regulation of two stemness (O...

متن کامل

Nanog, Oct4 and Tet1 interplay in establishing pluripotency

A few central transcription factors inside mouse embryonic stem (ES) cells and induced pluripotent stem (iPS) cells are believed to control the cells' pluripotency. Characterizations of pluripotent state were put forward on both transcription factor and epigenetic levels. Whereas core players have been identified, it is desirable to map out gene regulatory networks which govern the reprogrammin...

متن کامل

Induction of dedifferentiation, genomewide transcriptional programming, and epigenetic reprogramming by extracts of carcinoma and embryonic stem cells.

Functional reprogramming of a differentiated cell toward pluripotency may have long-term applications in regenerative medicine. We report the induction of dedifferentiation, associated with genomewide programming of gene expression and epigenetic reprogramming of an embryonic gene, in epithelial 293T cells treated with an extract of undifferentiated human NCCIT carcinoma cells. 293T cells expos...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular biology of the cell

دوره 18 5  شماره 

صفحات  -

تاریخ انتشار 2007